
Submitted to:
SNR 2018

c© Stefan Schupp, Francesco Leofante, Erika Ábrahám, Armando Tacchella
This work is licensed under the
Creative Commons Attribution License.

Robot Swarms as Hybrid Systems:
Modeling and Verification

Stefan Schupp
RWTH Aachen University

Aachen, Germany

Francesco Leofante
RWTH Aachen University

Aachen, Germany

Erika Ábrahám
RWTH Aachen University

Aachen, Germany

Armando Tacchella
University of Genoa

Genoa, Italy

Robot swarms can perform cooperative tasks without centralized coordination. On the one hand,
decentralized control enables scalable solutions, however designing controllers for single robots that
guarantee some desired global behavior of the swarm is difficult. In this work we analyse on a case
study the suitability of hybrid automata to model robot swarms, and the applicability of verification
methods for hybrid systems for their analysis.

1 Introduction

Robot swarms are distributed autonomous systems wherein teams of robots cooperatively perform a task,
without any centralized coordination [10]. Despite relatively simple reactive controllers for individual
robots, robot swarms might show complex behaviors, allowing the team to achieve goals that would defy
each single robot, or would require more expensive robots [2].

While the behavior of individual robots is usually easy to understand, predicting the overall swarm
behavior is difficult, and the synthesis of controllers implementing a desired swarm behavior is not
straightforward. Traditional simulation-based testing approaches for swarm analysis [7, 8] suffer from
intrinsically incomplete coverage. Rigorous analysis can be obtained via formal methods [3, 6, 11], how-
ever, most works in this direction abstract away details about the continuous dynamics of the robots,
which may be crucial for the emergence of unforeseen behaviors. In this paper, we report on our ex-
periences on the formal analysis of more expressive swarm models based on the discrete-continuous
formalism of hybrid automata [5] and flowpipe-construction-based reachability analysis techniques –
see [4] for an overview.

2 Swarm Engineering and Formal Methods

Despite intense research, robot swarms are still largely confined to academic research prototypes. Prac-
tical applications require confidence in the correct system behavior before deployment. In robotics, this
is more than just an abstract engineering principle, as the implements can damage the environment, and
thus should be subject to stringent requirements – see, e.g., ISO/TC 299. Therefore, engineering swarm
robotics systems should (i) get a swarm to perform a desired task and (ii) make sure that repeatable and
reliable behavior can be obtained with sufficient confidence. While requirement (i) has been the subject
of extensive research – see [2] for a recent review – requirement (ii) is still not considered mainstream.
Following standard practice, first the system requirements are specified before a design respecting those

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Robot Swarms as Hybrid Systems

Figure 1: Synchronization in the simulator.

requirements is produced, implemented and tested against the requirements. As single robots are embed-
ded systems, for this procedure state-of-the-art methodologies like model-driven engineering [13] can
be considered for single-robot requirements, but these methodologies cannot tackle swarm-level require-
ments.

As traditional system engineering techniques may not be suitable for swarm robotics, formal verifi-
cation could have an edge. To the best of our knowledge, the first contribution along this line is [12],
wherein the authors investigated the verification and validation of spacecraft using swarm technology. A
number of approaches was considered, including process algebras, X-machines and Unity Logic. How-
ever, at the time of the contribution (2004), the conclusion was that none of the approaches had all the
properties required to assure correct behavior and interactions of swarms in the context of the ANTS
(Autonomous Nano Technology Swarm) concept mission. A series of papers by Dixon et al. – see,
e.g., [6] for the most recent contribution in the series – explores probabilistic models and verification
thereof to prove swarm-level requirements. Noticeably, in the case of probabilistic models and logic, the
model of each single robot controller is very close to the actual implementation, and model checking
of relevant properties is reported to be feasible for small swarms only – less than 4 robots according to
the experiments in [6]. Finally, [3] applies probabilistic finite state machines and probabilistic temporal
logic to provide property-based design of swarm robotic systems.

All the above approaches neglect the dynamics of the robots and their interactions with the envi-
ronment. For swarms, this may hamper our ability to determine whether they always behave correctly.
Indeed, all robotic systems involve programmed digital controllers interfacing with the physical world.
Therefore, an accurate model of robot operation should include both the (discrete) control states and the
(continuously) varying physical quantities.

3 Modeling Swarms as Hybrid Automata – An Example

In the following, we discuss the modeling of swarms as hybrid automata [5], a well-established formal-
ism to model systems combining discrete and continuous dynamics.

In this work we reproduce the behavior of pulse-coupled oscillators as described in [9] and imple-
mented in the ARGOS simulation environment (see Fig. 1). The model involves a population of n
MarXbots [1], each of which is equipped with an LED. For i ∈ {1, . . . ,n}, the ith robot is characterized
by a clock xi subject to the continuous dynamics ẋi = 1, which applies as long as 0 ≤ xi ≤ f for some
firing threshold f ∈R>0. When xi = f , robot i flashes its central LED and xi is reset to zero by a discrete
event. Robots interact by a simple form of pulse coupling: when robot i flashes, all other robots are

Stefan Schupp, Francesco Leofante, Erika Ábrahám, Armando Tacchella 3

xi = 0

waiti

ẋi = 1
xi ≤ f

adapti

ẋi = 0

flash j 6=i

x′j := α · x j

xi ≥ f
x′i := 0

xi < f

flashi
xi ≥ f
x′i := 0

(a) First instance of model using label synchronization
(lsync I).

xi = 0

waiti

ẋi = 1
xi ≤ f

adapti

ẋi = 0

flash j 6=i

x′j :=α ·x j

flashi
xi ≥ f
x′i := 0

return
xi ≥ f
x′i := 0

return
xi < f

(b) Refined instance using label synchronization with
synchronized return to wait (lsync II).

Figure 2: Models of one robot in the synchronization benchmark using label synchronization; all jumps
are urgent, jumps of similar shape are collected and depicted as double lines.

pulled towards firing according to the following relation for some α ∈ R>1:

xi = f =⇒ x j :=
{

α · x j if α · x j < f
0 otherwise

for all j ∈ {1, . . . ,N}\{i} (1)

Note that Eq. 1 only describes the update of the clocks – neither the flashing nor implicit flashing of
a robots’ LED whenever the clock is reset to 0 is described. These properties have to be added to the
model to make them observable. Despite the simple model, the problem of pulse coupling represents a
good example of how global swarm behaviors can emerge in distributed systems without being explicitly
specified by individual control algorithms. Indeed, a global synchronization of flashing behaviors is
achieved – i.e., all clocks are synchronized – even though this is not explicitly imposed by individual
controllers.
Modeling. We propose several approaches on how to model the synchronization problem as a composi-
tional system. Each robot is modeled by a hybrid automaton Hi such that the swarm behavior for a swarm
of size n is modeled by a hybrid automaton H obtained by parallel composition H = H1|| . . . ||Hn of
the single components. In the following we will discuss the different approaches in detail. Note that all
transitions in our models are urgent, which forces the control to take the respective transition as soon as
its guard condition is satisfied. All approaches model the case distinction of Eq. 1 via guarded discrete
transitions to locations used to reflect the clock updates. Note that all approaches use constructions of
urgent transitions, labels and guards which implicitly guarantee that no time passes in those locations
required for adaption but only in the location wait.
Label synchronization. Modeling compositional hybrid systems involving communication between the
components can be achieved by annotating transitions in the single components by a synchronization
label. Labeled transitions in one component can only be taken, whenever for each other component it is
possible to take a transition annotated with the same label at the same time – in this case all components
synchronize on this transition. In our case to model flashing we can create a set of labels flashi, one
for each component. The resulting automaton for a single component can be found in Fig. 2a. In case
the clock valuation of a robot ri reaches f , in the respective automaton a transition with label flashi is
enabled. At the same time all other components take a synchronizing transition to the location adapt

used to model the clock updates.

4 Robot Swarms as Hybrid Systems

xi = 0
z = 0

waiti

ẋi = 1
ż = 0
x ≤ f

adapti

ẋi = 0
ż = 0

flashi

ẋi = 0
ż = 0

sync1
xi < f
z = 1

x′i := α · xi

sync2
xi ≥ f
x′i := 0 sync2

xi < f

xi ≥ f
x′i := 0,z′ := 1 sync1

z = 1
z′ := 0

sync2
z = 0

(a) Model, 1st version (shd I).

xi = 0
z = 0

waiti

ẋi = 1
ż = 0
x ≤ f

adapti

ẋi = 0
ż = 0

sync1
z = 1∧ xi < 1

x′i := α ·xi,z′ := 0

x = 1
x′i := 0,z′ := 1

sync2
xi ≥ f ∧ z = 0

x′i := 0

sync2

xi < f ∧ z = 0

sync1
z = 1

z′ := 0

(b) Reduced model (shd II).

Figure 3: Hybrid automata modeling a single robot in the synchronization benchmark using a shared
variable z for synchronization.

The syntax and semantics of hybrid automata do not allow for multiple synchronization labels on
a single transition. Therefore we add a synchronizing transition from wait to adapt for each other
component. While the model for a single component is relatively simple, using several synchronizing
transitions has a strong impact on the outcome of the parallel composition of several components, as the
number of transitions drastically increases with the number of modeled robots (see Tab. 2). Furthermore
a missing synchronization on return to the location wait adds unnecessary complexity. In the parallel
composition of n components of lsync I all possible sequences of single components returning to
location wait are encoded. In this setup all those sequences are built from urgent transitions where
additionally the order of execution does not matter. Applying partial order reduction by introducing a
fixed order of execution already can reduce the resulting automaton, however in this special case we can
even collect all transitions into one single transition which results in an improved version (lsync II).
Note that in general equivalence needs to be shown when unifying sequences of transitions – in our case
we know the execution order does not matter and no time passes in between the single jumps. The same
result can also be obtained when we allow for synchronization on returning to location wait (see Fig.
2b).

Even though it is natural to use label synchronization for this task, this way of modeling has the
drawback that each component requires full information about the total number of components (and
their respective synchronization labels), which does not allow for a generic approach. Furthermore, there
is no way to observe directly that two components flash at the same time, as the synchronization labels
mutually exclude each other and thus there is no system state which directly indicates synchronization.
Shared variables. To present an approach where single components do not require any prior knowledge
about the full system we present two versions using a shared variable z to overcome multiple synchro-
nization labels. The first approach (see Fig. 3a) uses two additional locations per component – one for
adaption of other variables and one to prepare the synchronized jumps. The synchronization labels in
both versions are optional – in fact they help to reduce the number of transitions in the resulting paral-
lel composition similar to the previous approach. Signaling of a flash is done via the shared variable z

Stefan Schupp, Francesco Leofante, Erika Ábrahám, Armando Tacchella 5

Table 1: Number of locations and transitions in the resulting automata for different numbers of robots.

robots
version 1 2 3 4 5 6 7 8

#locs.
shd I 3 7 15 31 63 127 255 511
shd II 2 4 8 16 32 64 128 256
lsync I + II 2 3 7 15 31 63 127 255

#trans.
shd I 6 18 54 162 486 1458 4374 13122
shd II 5 13 35 97 275 793 2315 6817
lsync I 3 6 33 164 755 3310 14077 58728
lsync II 3 6 21 68 215 670 2065 6313

which, whenever one clock reaches the threshold is set to 1, thus enabling the according transitions in
each component. In contrast to label synchronization, one additional location is required to be able to
set z = 1, which acts as a synchronization flag. A reduced version (shd II, see Fig. 3b) uses similar
mechanisms but unifies the locations adapt for adaption and flash for setting the synchronization flag
into one location to reduce the parallel composition result.

3.1 Results

The introduction of additional locations where it is ensured that no time passes in theory does not increase
the complexity of the analysis as no flow occurs. However, in practice especially guarded (urgent)
transitions between those locations heavily influence running times of analysis methods, as each guard
condition has to be verified. Our presented approaches employ urgency and multi-edges, i.e., two or
more transitions connect the same pair of locations, a feature which is not supported by all analysis tools.
Other modeling choices could have been made, e.g., eliminating multi-edges by introducing additional
intermediate discrete locations with exclusive transition guards, or enforcing urgency with a combination
of invariants and guards. However this would have resulted in an unnecessarily complex model.

To compare our approaches we have created models for the synchronization benchmark for up to
8 robots using all presented approaches. Statistics about the resulting hybrid automata can be found in
Tab. 2. From our results we can observe, that the natural approach via label synchronization (lsync
I) creates a high number of transitions in the resulting composed automaton while keeping the number
of locations low. Applying the optimization (lsync II) which effectively collects sequences of urgent
transitions into a single urgent transition, reduces the number of transitions drastically. The versions
using shared variables (shd I + II) produce results with less transitions, e.g. edges for the return to wait
are collected by a synchronization label (sync2) and thus create one jump in the parallel composition.

Reachability analysis. Figure 4 shows flowpipes for a system with 3 robots with parameters f =
100,α = 1.1 computed with our reachability analysis tool HYDRA, which is based on the C++ library
for state set representations HYPRO [14]. All robots start with different initial clock valuations (x1 ∈
[0,5],x2 ∈ [15,20],x3 ∈ [30,35]). We use a local time horizon (max. time spent in one location) of 110
sec. and support functions as a state set representation with a time step size of 0.01 sec.. In the enlarged
part (right) we can observe the first sequence of flashes. Robot r3 reaches the firing threshold first and
flashes, which causes the other robots to adapt their clock values. After that robot r2 is the next one to

6 Robot Swarms as Hybrid Systems

Table 2: Running times for different numbers of robots using f = 1,α = 1.1 (time step size: 0.01, jump
depth: 20, state set representation: boxes). Timeout (TO) was set to 10 minutes.

robots
version 1 2 3 4 5 6 7 8

shd I 0.11 0.11 0.12 0.16 0.48 9.88 TO TO
shd II 0.11 0.11 0.13 0.19 0.75 16.85 TO TO
lsync I 0.12 0.11 0.13 0.21 1.02 64.6 TO TO
lsync II 0.12 0.11 0.12 0.14 0.25 2.96 146 TO

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

x

t

x
1

x
2

x
3

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 55 60 65 70 75 80 85 90
x

t

x
1

x
2

x
3

Figure 4: Overlayed flowpipes for a system of 3 robots for f = 100,α = 1.1 (local time horizon 110
sec.). Right: excerpt showing clock adaption after flashing.

flash, which results in a second adaption for robot r1. After the third flash after 250 sec. of robot r3 all
cycles are approximately synchronized.

4 Conclusion and Future Directions.

We have presented several approaches towards modeling a swarm of robots implementing synchroniza-
tion behaviors without centralized coordination. Our experimental analysis show that modeling already
a simple system like this poses several challenges which need to be addressed to be able to apply and
scale formal verification techniques to high-dimensional swarms. This opens up new perspectives for re-
searchers to devise clever abstractions and techniques to represent complex systems like robotics swarms.
As shown in this paper, simple modeling choices can speed up computations making a first step towards
the applicability of reachability based techniques to robot swarm.

References

[1] Michael Bonani, Valentin Longchamp, Stéphane Magnenat, Philippe Rétornaz, Daniel Burnier, Gilles Roulet,
Florian Vaussard, Hannes Bleuler & Francesco Mondada (2010): The MarXbot, a miniature mobile robot
opening new perspectives for the collective-robotic research. In: Proc. of IROS’10, pp. 4187–4193.

[2] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari & Marco Dorigo (2013): Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence 7(1), pp. 1–41.

Stefan Schupp, Francesco Leofante, Erika Ábrahám, Armando Tacchella 7

[3] Manuele Brambilla, Carlo Pinciroli, Mauro Birattari & Marco Dorigo (2012): Property-driven design for
swarm robotics. In: Proc. of AAMAS’12, pp. 139–146.

[4] Colas Le Guernic (2009): Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. Ph.D.
thesis, Joseph Fourier University, Grenoble, France.

[5] Thomas A. Henzinger (1996): The Theory of Hybrid Automata. In: Proc. of LICS’96, IEEE Computer
Society Press, pp. 278–292.

[6] Savas Konur, Clare Dixon & Michael Fisher (2012): Analysing robot swarm behaviour via probabilistic
model checking. Robotics and Autonomous Systems 60(2), pp. 199–213.

[7] Thomas Halva Labella, Marco Dorigo & Jean-Louis Deneubourg (2004): Efficiency and Task Allocation in
Prey Retrieval. In: Proc. of BioADIT’04, pp. 274–289.

[8] Wenguo Liu, Alan F. T. Winfield, Jin Sa, Jie Chen & LiHua Dou (2006): Strategies for Energy Optimisation
in a Swarm of Foraging Robots. In: Proc. of SAB’06, pp. 14–26.

[9] Renato E Mirollo & Steven H Strogatz (1990): Synchronization of pulse-coupled biological oscillators.
SIAM Journal on Applied Mathematics 50(6), pp. 1645–1662.

[10] Lynne E. Parker (2000): Current State of the Art in Distributed Autnomous Mobile Robotics. In: Proc. of
DARS’00, pp. 3–14.

[11] Joaquı́n Peña, Christopher A. Rouff, Mike Hinchey & Antonio Ruiz Cortés (2011): Modeling NASA swarm-
based systems: using agent-oriented software engineering and formal methods. Software and System Mod-
eling 10(1), pp. 55–62.

[12] Christopher Rouff, Amy Vanderbilt, Michael G. Hinchey, Walt Truszkowski & James L. Rash (2004): Prop-
erties of a Formal Method for Prediction of Emergent Behaviors in Swarm-Based Systems. In: Proc. of
SEFM’04, pp. 24–33.

[13] Douglas C Schmidt (2006): Model-driven engineering. IEEE Computer Society 39(2), p. 25.
[14] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf & Stefan Kowalewski (2017): HyPro: A C++

Library of State Set Representations for Hybrid Systems Reachability Analysis. In: Proc. of NFM’18, pp.
288–294.

	Introduction
	Swarm Engineering and Formal Methods
	Modeling Swarms as Hybrid Automata – An Example
	Results

	Conclusion and Future Directions.

